
Sensitivity analysis of the near-road dispersion model RLINE - 
an evaluation at Detroit, Michigan

Chad W. Milando and Stuart A. Batterman*

Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 
USA 48109

Abstract

The development of accurate and appropriate exposure metrics for health effect studies of traffic-

related air pollutants (TRAPs) remains challenging and important given that traffic has become the 

dominant urban exposure source and that exposure estimates can affect estimates of associated 

health risk. Exposure estimates obtained using dispersion models can overcome many of the 

limitations of monitoring data, and such estimates have been used in several recent health studies. 

This study examines the sensitivity of exposure estimates produced by dispersion models to 

meteorological, emission and traffic allocation inputs, focusing on applications to health studies 

examining near-road exposures to TRAP. Daily average concentrations of CO and NOx predicted 

using the Research Line source model (RLINE) and a spatially and temporally resolved mobile 

source emissions inventory are compared to ambient measurements at near-road monitoring sites 

in Detroit, MI, and are used to assess the potential for exposure measurement error in cohort and 

population-based studies. Sensitivity of exposure estimates is assessed by comparing nominal and 

alternative model inputs using statistical performance evaluation metrics and three sets of 

receptors. The analysis shows considerable sensitivity to meteorological inputs; generally the best 

performance was obtained using data specific to each monitoring site. An updated emission factor 

database provided some improvement, particularly at near-road sites, while the use of site-specific 

diurnal traffic allocations did not improve performance compared to simpler default profiles. 

Overall, this study highlights the need for appropriate inputs, especially meteorological inputs, to 

dispersion models aimed at estimating near-road concentrations of TRAPs. It also highlights the 

potential for systematic biases that might affect analyses that use concentration predictions as 

exposure measures in health studies, e.g., to estimate health impacts.
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1 Introduction

Exposure metrics used in health effect studies of traffic-related air pollutants (TRAPs) can 

affect estimates of health risk, such as the magnitude and confidence interval of odd-ratios in 

cohort and panel studies [1]. While many approaches have been used, the development of 

accurate exposure metrics for these studies remains challenging [2, 3]. Studies requiring 

spatially-resolved exposure estimates cannot depend on central site air quality monitoring 

due to the local scale variation or spatial gradients of TRAP concentrations found near major 

roads [4] and the spatially sparse nature of ambient monitoring networks, including the lack 

of near-road monitoring sites. Considering active fine particulate matter (PM2.5) monitors in 

US cities and surrounding suburbs, for example, Los Angeles has 11 monitoring sites, 

Washington DC has 4, and Detroit has 9 [5]. Considering near-road monitoring stations, 

these cities have only one or two sites each, and a total of only 72 near-road sites operated 

across the US as of 2015 [6]. Instead of central site monitoring, health studies have relied on 

exposure metrics derived using interpolation methods, geographic information system (GIS) 

variables, land use regression and other methods that incorporate variables such as the 

distance to nearby roads, traffic volume, vehicle mix, traffic intensity and population density 

[2, 3]. While useful for health effect analyses, these approaches have several limitations: 

most do not capture the temporal variability resulting from changes in meteorology, traffic 

patterns and emission factors; the ability to generalize to other environments and other 

pollutants is limited; and metrics expressed in terms other than concentration (e.g., 

proximity) can be difficult to interpret [7, 8].

Dispersion models can overcome many of the limitations of monitoring data and the 

exposure approaches noted above, and they have been used in a several recent health studies 

[7–14]. Results of dispersion models, like other models, depend on the model inputs and 

parameters selected. Sensitivity analyses can reveal how a particular model responds to 

variations in input variables or internal parameters [15]. While not providing a full measure 

of model uncertainty, sensitivity analyses reveal the relative amount of uncertainty 

associated with each model input, the robustness of the model with respect to changes in 

inputs and parameters, and critical model inputs, i.e., those that are uncertain and that cause 

large changes in model predictions [15, 16].

Results of dispersion models can be sensitive to model inputs and parameters. For example, 

all dispersion models require meteorological data, which fundamentally influence dispersion 

calculations [16–19]. Ideally, these data use on-site or local observations [19]. However, 

local meteorological datasets are typically limited, e.g., of the 72 near-road monitoring sites 

in the USA, only 6 have a National Weather Service (NWS) meteorological station within 5 

km, and the average distance to the nearest station is 18.5 km [20]. Previous sensitivity 

studies using industrial emissions, e.g., mercury and hexavalent chromium, attributed 16 – 

25% variability in results to changes in meteorological inputs [21, 22]. However, with 

regards to TRAPs in urban areas, such sensitivity studies are limited. As a second example, 

emission data used in dispersion models depend on traffic activity (e.g., number of vehicles, 

vehicle mix, vehicle speed and acceleration), which in turn depends on commuting and work 

schedules, construction activity, weather and many other factors [23]. Typically, emission 

rates are derived using simplified and default allocations to obtain hourly and daily estimates 
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from annual average data. Again, local information regarding traffic volume and mix is 

recommended, but such inputs are rarely available.

This study examined the sensitivity of exposure estimates for health applications produced 

by dispersion models to meteorological, emission and traffic allocation inputs. The analysis 

used the Research Line source model (RLINE), a research-grade dispersion model 

specifically designed for near-road applications [24], to predict daily average concentrations 

of two common TRAP, oxides of nitrogen (NOx) and carbon monoxide (CO). These 

concentrations were compared to measurements at near-road monitoring sites in Detroit, MI, 

and were used to assess the potential for exposure measurement error in cohort and 

population-based studies. PM2.5 was also measured at near-road monitoring stations in 

Detroit; however, previous analyses [25] showed that background levels of PM2.5 were high 

(> 85% of total), thus the sensitivity to changes in mobile source modeling were not 

examined.

2 Methods

The sensitivity of dispersion model-based exposure estimates was determined by comparing 

baseline (or “nominal”) and alternative inputs for meteorological, emission, and traffic 

allocation parameters. This work builds on a previous operational evaluation of RLINE [25], 

which covers in detail the methods by which emissions from point and mobile sources in 

Detroit, MI were modeled (only the RLINE mobile source modeling is described below). 

Model predictions using nominal and alternative inputs were compared to observed 

monitoring data, and exposure estimates using nominal and alternative inputs were 

compared for a “vulnerable” and general population in Detroit, MI. Differences in predicted 

concentrations due to varying model inputs were assessed using metrics recommended for 

air quality model evaluation [26, 27], and in the application are translated to possible health 

impacts using health impact assessment techniques.

2.1 Monitored data

The Detroit area contains five US Environmental Protection Agency (EPA) Air Quality 

System (AQS) monitoring stations located near high traffic roads (Figure 1). These include: 

the “suburban” Allen Park site 190 m southeast of Interstate 75 (I-75; annual average daily 

traffic (AADT) of 89,800 [28]); the “industrial” Dearborn site (150 m northwest of I-75; 

AADT = 105,800); the “schools” or East 7 Mile site (390 m east of MI-97; AADT = 9,500); 

and the “near-road” and “urban” Eliza Howell sites (respectively 10 and 100 m north of I-96, 

AADT = 152,000). Air quality data for 2011 to 2014 were obtained from the US EPA AQS 

Datamart [29]. Over the study, these sites used several types of monitoring instruments that 

differed in sensitivity and possibly other aspects, thus, analyses at each site are separated by 

instrument type [30]. NOx at the near-road and urban sites was monitored using gas-phase 

chemiluminescence and Ecotech 9814B monitors (“IGpCHEM”) from October 2011 

through December 2013, and using Thermo Environmental Instruments Model 42C 

instrumental chemiluminescence (“ICHEM”) in 2014. NOx at the schools site was measured 

using a Thermo Environmental Instruments Model 42C and by ICHEM. CO was monitored 

at the near-road site by instrumental gas filter correlation using an Ecotech 9830 monitor 
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(“EC9830T”) from October through December of 2011, and a Thermo Model 48C monitor 

using instrumental non-dispersive infrared (“INDiI”) through 2014. CO at the urban site was 

measured using Thermo Environmental Instruments Model 48C and by INDiI, and at the 

suburban site using an instrumental gas filter correlation analyzer (“IGFC”). CO at the 

industrial site was measured using a Teledyne API T300 using IGFC. For comparison to 

model predictions, NO and NO2 measurements in ppb were converted to NOx 

concentrations using the average observed ratio (1 µg m−3 NOx = 0.5495 ppb NOx); CO 

comparisons were made in ppb. Measurements below method detection limits (MDLs) were 

omitted. Daily averages were calculated from hourly data.

2.2 Meteorology

Meteorological data were obtained at the five AQS sites, two local National Weather Service 

(NWS) stations located 33 km apart (Detroit City Airport or KDET; Detroit Metro Airport 

or KDTW; see Figure S1 for wind roses) [31] and the Pontiac, MI radiosonde site 

(approximately 45 km north of Detroit) [32] (Figure 1). The NWS data include the 

meteorological parameters needed by the AERMET meteorological data preprocessor [33] 

(See Table S1 for list of parameters) to develop the “surface” (SFC) meteorology files used 

by RLINE, whereas the AQS sites collect only basic parameters, e.g., surface wind speed 

and direction. The NWS data at KDET was designated as nominal due to its central location 

and presumed representativeness [8]. Three sets of alternative meteorological inputs were 

developed: SFC files using NWS data at KDTW; AQS-site-specific meteorology 

supplemented with KDET data (on-site/KDET); and site-specific meteorology supplemented 

with KDTW data (on-site/KDTW). SFC files generated using AERMET and the NWS data 

were confirmed to be similar or identical to those distributed by the Michigan Department of 

Environmental Quality (MDEQ) for air quality modeling purposes [34]. Differences 

between nominal and alternative wind-speed and direction were evaluated using the circular 

correlation coefficient [35]. Hours missing any required parameter were excluded. The SFC 

files were mostly complete, e.g., only 6 to 15% of all hours were missing, with most of the 

missing hours occurring at night-time (see Table S2).

2.3 Emission inventory, emission factors, and time allocation factors

A spatially- and temporally-resolved link-based emission inventory consisting of 9,701 links 

provided emission factors which were used to generated RLINE predictions for dispersion of 

NOx and CO from all but the smallest (local) roads in Detroit [36]. As described elsewhere 

[25], the original inventory was updated with more recent traffic volume data from the 

Michigan Trunkline Highway System [37]. The nominal emission factors (g vehicle−1 mile
−1) were derived using the Motor Vehicle Emission Simulator (MOVES) version 2010 [38] 

and Detroit-specific data for 2010. Other MOVES inputs included temperature (grouped in 

11 bins from 0 to 100 °F in 10 degree increments) and barometric pressure (using defaults 

similar to local conditions) [39]. Following previous work [36, 40], emission factors for 

running exhaust and running evaporative modes were calculated. The emissions inventory 

was updated to create alternative inputs using MOVES 2014a [38] and 2015 inputs for the 3-

country area (Wayne, Macomb and Oakland counties) provided by the Southeast Michigan 

Council of Governments (SEMCOG). The updated inventory reflects changes from 2010 to 

2015, as well as differences between fleets in the 3-country area as compared to Detroit 
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(which occupies most of Wayne County). The sum of the link-based emissions inventory for 

Detroit represented 66 and 71% of the CO and NOx emissions, respectively, of 2011 

National Emission Inventory (NEI) on-road emissions for Wayne County (Table S3).

Hourly vehicle volume estimates were derived for each link of the emissions inventory from 

annual average daily traffic (AADT) estimates adjusted by temporal allocation factors 

(TAFs), e.g., for month-of-year, day-of-week and hour-of-day adjustments [36]. For the 

alternative cases, Detroit-specific TAFs separated commercial and non-commercial vehicles 

and are based on 2009 to 2012 data monitored at 13 permanent counting stations in 

southeast Michigan [41]. Importantly, these “local” TAFs distinguish the morning and 

afternoon commuting (“rush hour”) volume peaks for passenger vehicles from the mid-day 

peak for commercial vehicles. A profile that merged commercial and non-commercial fleets 

in Detroit was also used as alternative. The nominal profile of default US TAFs for a 

combined commercial and non-commercial fleet was generated from previous work [23].

2.4 Receptor sets

Three sets of receptors were used. The first placed receptors at the near-road monitoring 

sites in the study domain (n=5; Figure 1). The second and third sets respectively represent 

location of a vulnerable school-age population and the general population. The second set 

used 206 receptors that represented residences of children with asthma participating in the 

NEXUS study (called “NEXUS” receptors; 6 receptors outside the modeled domain were 

excluded) [7]. Approximately two-thirds of these children lived within 200 m of roads with 

AADT > 75,000 (e.g., interstate highways) at the time of enrollment into NEXUS, thus, this 

set oversamples near-road locations. The third set was designed to be representative of 

residences in Detroit. This set, called “Detroit,” was created by randomly selecting (with 

replacement) 1000 of the 2010 Census blocks in Detroit, which resulted in 543 unique 

blocks. Receptors were placed at the building footprint-centroid of the highest occupancy 

parcel in each selected block [42, 43].

Distances to the nearest “major” road, i.e., AADT > 10,000 (a conservative cut-point for 

distinguishing high trafficked roads), were calculated for receptors in sets 2 and 3 (Figure 

S2). For the NEXUS receptors, 61% were within 200 m, 20% within 200 – 400 m, and 19% 

beyond 400 m; for the Detroit receptors, these three groups contained 57, 29 and 13% of the 

population-weighted receptors, respectively. The differences between receptor sets 2 and 3 

reflect the design of the NEXUS study which selected households that were near major 

roads (<200 m) as well as comparison households that were further away (>350 m), 

however, differences are somewhat diminished since many NEXUS children moved during 

the study period. We also calculated the number of major roads within 500 m of each 

receptor. For the NEXUS receptors, 10% of receptors had no major roads within 500 m, 

66% had 1 – 10 major roads within 500 m, and 23% had more than 10 major roads within 

500 m; for Detroit receptors, the corresponding percentages are 7, 74 and 17%, respectively. 

Thus, not only are NEXUS receptors closer to major roads, they are also closer to more 

major roads than the general Detroit population.
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2.5 Model evaluation and sensitivity analysis

Model predictions and monitoring observations were compared in an operational evaluation 

intended to assess model performance for specific applications [25], e.g., daily exposure 

measures in health studies. A daily period also is motivated wind direction variability that 

renders evaluations at the hourly level “almost fruitless” [27]. Previous RLINE evaluations 

have provided diagnostic evaluations using short-term (e.g., hourly) analyses [24, 44, 45]. 

Comparisons and sensitivity analyses were conducted by pollutant, wind direction, 

monitoring site, season and day-of-week. Wind direction was determined for wind speeds 

exceeding 1 m/s, and labeled at each monitoring site as “downwind” if within 30° of 

perpendicular of the nearest major road and as “parallel” for directions within ±15° of 

parallel [44]. For each analysis, daily average concentrations were calculated if a minimum 

of 6 hours of valid model-observation pairs existed, e.g., for comparisons of daily averages 

during downwind conditions, 6 hours of downwind data on a specific day were required for 

a daily average to be calculated.

The performance evaluation emphasized four metrics that are widely used for dispersion 

modeling and for which performance criteria have been suggested [27]: percent of modeled 

values within a factor of 2 of observed values (F2); Spearman ranked correlation coefficient 

(RSP); fractional bias (FB); and geometric variance (VG). The ratio between the natural 

logarithm of the reducible component of VG and total VG (the product of the systematic and 

random components) was used to estimate the percentage of reducible model errors (% 

Red). The sensitivity analyses used these metrics to contrast performance of nominal and 

alternative nominal model inputs.

Given the number of comparisons in the analysis (by site, pollutant, input, and metric), 

several rules were used to identify potentially meaningful differences and produce a 

summary measure. Each metric was compared to its “best” value (i.e., 1.00 for RSP and VG, 

0.00 for FB and % Red), and symbols were used to show whether an alternative model input 

improved model performance (●), gave results that were among those that improved results 

(‘~’), did not conclusively improve model performance (‘ ’), or diminished performance 

from nominal (○). Only comparisons with at least one RSP ≥ 0.1 were considered. Only 

potentially meaningful changes were distinguished; changes in RSP and other metrics had to 

exceed a chosen threshold of 0.05; this threshold was selected to balance sensitivity and 

avoid false indications. Comparisons of 2010 (nominal) and 2015 emission factors, and 

comparisons of the US default TAF (nominal) to the two alternative TAFs (Detroit-specific 

with commercial and non-commercial traffic separated, and combined) used the above 

comparison scheme. Comparisons of the four sets meteorological inputs were more 

complex. We checked whether on-site/KDET meteorology provided the best results (denoted 

as “on-site/KDET highest?”); whether KDET data provided better results than KDTW data 

when using NWS data alone or in conjunction with on-site data (“KDET > KDTW?”), and if 

on-site data generally improved results over NWS data alone (“on-site > NWS?”).

2.6 Application

To demonstrate the possible effect of model inputs on health outcomes in an epidemiological 

study, we estimated NOx-attributable health impacts for two sets of meteorology and 
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receptor sets 2 (NEXUS) and 3 (Detroit). Daily NOx concentrations at the NEXUS and 

residential receptor sets were calculated using KDET and KDTW meteorology for 2011, 

commercial and non-commercial traffic allocation factors and 2015 emission factors. Every 

12th day of the year was analyzed due to the large computation burden of modeling hourly 

data using 9,701 sources and 754 receptors. Outcomes considered included childhood 

asthma exacerbations (defined as one or more asthma-related symptoms for children ages 6–

14), emergency department (ED) visits for asthma (children ages 0 – 17), and 

hospitalizations for asthma (ages 0 – 64). Baseline data used in these estimates included 

current asthma hospitalizations and ED visits in Detroit [46], an incidence rate of 0.412 

cases per person-day for asthma exacerbations (6 – 14 years) [47], the prevalence of asthma 

in Wayne County [48], and 2010 Census population data [49]. Concentration-response 

coefficients used log-linear and logistic models [50–53]. Predicted health outcomes for the 

two sets of meteorological inputs and two sets of receptors were compared using the non-

parametric paired Wilcoxon signed rank test and descriptive statistics.

3 Results

At four of the monitoring sites (all but the industrial site), both NOx and CO predictions met 

recommended performance criteria [26, 27], specifically, F2 ≥ 50%, VG ≤ 1.6, and mean 

bias ≤ 30% (not considered in this work). These criteria were not met at the industrial site, 

where performance was poor (e.g., RSP < 0.1). While close to I-75 (150 m), CO levels at this 

site may be affected by many factors that are incompletely known and/or modeled, including 

emissions from three adjacent and active rail lines and nearby industry (e.g., refining, 

cement, salt, steel, coke, sludge incineration). In addition, both I-75 and a major arterial 

(Fort St.) at the site become elevated to cross the rail lines and the River Rouge. For these 

reasons, this site was excluded from further analysis.

3.1 Sensitivity to meteorological inputs

Comparisons of RLINE predictions were sensitive to the selection of the meteorological 

inputs (Table 1). Generally, the best match to monitored data was obtained using on-site/

KDET meteorology. For example, for NOx at the near-road and urban sites, on-site/KDET 

meteorology gave the highest RSP (0.57 to 0.74), among the lowest bias, and the lowest VG. 

The best performing case (NOx monitored at the near-road site using the IGpCHEM 

instrument) also had the lowest % Red with the on-site/KDET data. While the schools site 

performed better with the NWS data, RSP was low (0.40 to 0.43 with KDTW data, compared 

to 0.32 for KDET data). Comparing the NWS data both with and without the on-site data, 

KDET obtained better performance in most cases. CO results were similar, e.g., on-site/

KDET data attained among the highest RSP at near-road and urban sites, the best performing 

case (near-road site, EC9830T method) had the only improvement seen in % Red (although 

higher bias), and VG was generally lowered. At sites more distant from roads, performance 

trends for CO were less clear and often comparable for the four meteorological datasets due 

to the variation and overlap of RSP and FB across the sites, while VG and % Red were very 

similar at most sites.
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Analyses by wind direction, weekday and season, while not definitive, again suggested that 

best performance was attained using on-site/KDET meteorology (Table S5 – S10). For NOx, 

weekday results largely mirrored results discussed earlier, but Saturday and Sunday results 

were improved (e.g., higher RSP) at only the near-road site (IGpCHEM instrument). By 

season, only the near-road site followed the overall trend. Interestingly, results by wind 

direction show better performance using KDTW rather than KDET meteorology at the near-

road site. This site is at the western part of the study area and, unlike the other monitoring 

sites, is about the same distance to KDTW (20 km) and to KDET (22 km). Nevertheless, 

both NWS datasets gave relatively high RSP at this site (0.57 – 0.70; IGpCHEM monitor). 

For CO, missing data hampered analyses, but on-site/KDET sometimes improved 

performance, e.g., this dataset obtained the highest RSP at the near-road (EC9308T method) 

and urban sites during weekdays and during downwind conditions, and during winter at the 

near-road site (EC9830T) other site had lower bias and VG using on-site/KDET. However, 

the other CO results were inconsistent, e.g., on-site/KDET meteorology increased bias and 

VG during downwind conditions at the near-road and urban sites, and parallel winds lowered 

RSP at the urban site. Changes at the suburban mostly fell below the significance threshold 

(e.g., 0.05 for RSP).

3.2 Emission factors

The updated (2015) emission factors mostly did not change RSP for NOx, though FB and VG 

were lowered (i.e., improved) in three cases (at the near-road/ICHEM and urban sites; Table 

2). CO showed similar but less consistent effects. Results for downwind and parallel winds 

suggested improvements for NOx using the updated emission factors, e.g., RSP increased and 

bias decreased at the near-road/ICHEM and urban sites, VG increased at the same sites, and 

% Red decreased at the near-road/IGpCHEM site. For CO, the updated dataset did not 

change RSP for downwind and parallel winds, but % Red was lowered at the near-road/

EC9830T site, and bias and VG were lowered at the other sites.

Day-of-week analyses for NOx showed that the updated emission factors improved RSP, bias 

and VG on weekdays (all sites) and Saturdays and Sundays (most sites) (Table S11 – S16). 

Day-of-week analysis for CO gave similar trends, e.g., the updated emission factors lowered 

bias and VG at the near-road/INDiI site across all day types. Seasonal trends were less 

consistent. For NOx, the updated emission factors improved RSP at the near-road and urban/

IGpCHEM sites, and lowered bias and VG at the urban site in winter; effects in other 

seasons were less consistent. For CO, investigations were hampered by missing data, but 

results with the updated inventory showed some improvements, e.g., in winter and fall, % 

Red decreased at the near-road site, and bias and VG were lowered in most cases, and in 

spring and summer, bias and VG were lowered at the near-road/INDiI and industrial sites.

3.3 Temporal Allocation Factors

The three sets of TAFs yielded few differences above significance thresholds in either NOx 

and CO predictions. Thus, the Detroit-specific TAFs that separated commercial and non-

commercial traffic did not perform better than the simpler and default TAFs. Given the large 

changes in the hourly profiles, this lack of sensitivity to the TAFs is surprising. It might 
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result from the use of daily averages in the evaluation, which could mask hourly changes, or 

other compensating errors.

3.4 Exposure estimates

Predictions of daily average NOx concentrations using the KDET and KDTW meteorology 

respectively at the NEXUS receptors averaged 12.5 and 15.6 µg m−3, higher than those at 

the Detroit receptors (8.3 and 11.1 µg m−3), reflecting locational differences between the 

receptor sets, and in particular, the proximity of many NEXUS participants to major roads 

(Table 3).

Scatterplots of daily NOx predictions comparing predictions using KDET and KDTW 

meteorology for receptor sets 2 (NEXUS) and 3 (Detroit receptors) show high correlation 

(RSP > 0.85) on most days (Figure 2). Somewhat lower correlations on a few days (e.g., for 

8/28/2011, NEXUS RSP = 0.81 and Detroit RSP = 0.79) were due to relatively large changes 

at a subset of receptors located across the area; otherwise no systematic spatial or other 

pattern was observed on these days. The most striking observation, however, of this 

comparison are the large day-to-day shifts in the bias between predictions using KDET and 

KDTW meteorology. Of the 30 days modeled, predictions using KDTW meteorology were 

biased upwards on 16 days, downwards on 3 days (4/6/2011, 5/12/2011, 9/21/2011), and 

similar on the remaining 11 days. These results, which include weekdays and weekends, are 

attributable solely to the meteorological inputs. (Stratification by season, day type and other 

factors was not attempted due to the limited sample size.) These changes appear to be driven 

by wind speed and stability effects, and receptors clustered within about 100 m of M-10 and 

I-94 were especially affected (Figure S3). These large changes were unexpected since daily 

averages and meteorological parameters at the two NWS sites were highly correlated (Table 

S17).

The positive prediction bias at the NEXUS and Detroit receptors was reflected in predicted 

health outcomes. The average attributable health impact differed significantly between 

KDET and KDTW on all but one of the 30 days modeled, and KDTW meteorology 

increased the frequency of adverse outcomes on most days, especially for the NEXUS 

cohort (Table S18). Similarly, when outcomes were pooled across receptors and days, 

differences in average attributable cases at NEXUS receptors exceeded those for the Detroit 

receptors (Table 4).

4 Discussion

4.1 Meteorology

The sensitivity of RLINE results to meteorological inputs highlights the importance of 

appropriate input data. Some results tended to differ by site. For the sites nearest roads, on-

site/KDET followed by KDET performed best, e.g., attaining the highest RSP. At the 

suburban and urban sites, performance with KDET data also was better than with KDTW, 

but NWS data performed better than on-site. These sites are farther from major roads, and 

monitored concentrations likely result from multiple emission sources and not just traffic on 

the nearby road. In these cases, on-site meteorological measurements may be less 
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representative for dispersion modeling than airport data, at least under some source and 

meteorological conditions, e.g., ground level emissions during calms, and NWS data may 

better represent the conditions affecting dispersion from roadways. Prior dispersion 

modeling in Detroit has judged both NWS sites to be representative, e.g., modeling of SO2 

emitted from mostly elevated point sources used KDTW [54], while TRAP modeling used 

KDET [55]. As noted, individual meteorological parameters, e.g., wind speed or direction, 

typically are highly correlated between the nominal and alternative inputs, although some 

differences were identified, especially at the suburban site (Table S17). However, the 

combined effect of different meteorological datasets is best determined by sensitivity 

analyses examining pollutant predictions.

Application to the NEXUS and Detroit receptors receptor sets showed that meteorological 

datasets obtained at NWS stations 18 km or more apart can make large differences in daily 

concentration predictions on some days, which supports findings from comparisons at the 

monitoring sites. Both NWS are at airports, and the surrounding terrain is flat and mostly 

urban, commercial, wooded, or agricultural. The differences in predicted concentrations 

likely result from changes in atmospheric stability that alters near-road concentration 

gradients, possibly due to very stable conditions which can cause the highest concentrations 

[24]. This suggests the possibility of significant exposure measurement error if the 

meteorological data are not representative, e.g., measured at a distant site. Moreover, errors 

may be higher for more vulnerable populations, as portrayed by the NEXUS receptors for 

children who lived close to major roads.

Due to siting and instrumentation limitations, relatively few air quality monitoring sites, 

including the near-road sites, measure all of the meteorological parameters required for 

research or regulatory-grade dispersion modeling. Thus, local measurements were blended 

together with NWS (or other) observations. While this approach is workable, incorporated in 

the AERMET processor, and generally obtained the best performance in the Detroit 

application, a full set of local measurements (e.g., including parameters given in Table S1) 

may be preferable for obtaining wind fields that are the most representative of near-road 

environments. This option, which could not be fully tested in Detroit, leads to a 

recommendation to collect a full set of local meteorological measurements for dispersion 

modeling when practicable (including factors such as ground cover, surface roughness, and 

other factors that affect the spatial variation in wind fields). This reinforces long standing 

model guidance that recognizes the increased heat flux and surface roughness in urban areas 

and the general need for multiple monitoring sites in large urban areas [19, 56]. However, no 

specific guidance is yet provided for near-road modeling. For larger roads in urban settings, 

such modeling involves winds, emissions and pollutant dispersion transitioning from the 

road “microenvironment,” defined by large paved areas (e.g., portions of the right-of-way for 

I-96 in Detroit exceeds 150 m in width as each traffic direction includes three local and three 

express lanes, a two lane service road, multiple shoulders, and some vegetated buffers), to 

the adjacent populated “microenvironment,” which can be mostly suburban in nature, 

dominated by buildings and trees and with relatively fewer flat paved surfaces. Guidance 

defining the most representative meteorological data for traffic-related emissions in such 

settings, which differs from the general urban environment, would improve near-road 

predictions.
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4.2 Emission factors

The performance analysis suggested that RLINE performed slightly better using the 

alternative emission factors as compared to nominal ones. The alternative inputs 

substantially changed emission factors for several vehicle classes, e.g., overall emissions 

from light duty gas vehicle (LDGV) and heavy duty diesel vehicle (HDDV) classes 

decreased by 48 and 30% for NOx, and by 30 and 23% respectively for CO; changes at 

certain speeds and temperatures could be larger (Table S19– S20). To help interpret these 

changes as well as traffic activity estimates, which are frequently reduced to vehicle counts 

(see next section), emission factor differences among vehicle classes can be expressed as 

passenger car equivalents (PCEs) [41, 57]. As examples, using LDGV emissions as a base: 

NOx emissions from a single HDDV represent 12 to 63 PCEs; CO emissions represent only 

0.2 to 1.3 PCEs; and both NOx and CO PCEs increase at lower speeds and colder 

temperatures (Table S21). The large changes in NOx emission factors suggest that emission 

estimates can be very sensitive to the estimated traffic activity (e.g., commercial traffic 

counts), especially during cold weather and congestion when speeds are lower and the PCEs 

are high. The temperature and pressure dependence of MOVES-generated emission factors 

might partially mask modeled differences in predicted concentrations obtained using 

different emission factor sets, although the post-processing steps taken (e.g., creating 

temperature-specific emission factors) may mitigate this effect. Alternatively, changes in 

fleet mix could also have a large impact on emission. factor changes also depend on the fleet 

mix. Our fleet mix estimates for commercial vehicles (which are mostly diesel) in Detroit 

range from 3 to 5% on most roads to 9% on portions of major roads, e.g., I-75 and I-94 

(Table S22). Considering a NOx PCE of 20 and 5% HDDVs, emissions from HDDVs and 

LDVs are equivalent, which shows the need to obtain accurate traffic activity data.

Uncertainty in mobile source emission inventories can arise from many sources, e.g., the 

representation of the road network geometry, uncertainty in traffic activity (e.g., vehicle-

kilometers traveled or VKT, volume, vehicle type and age, speed, acceleration, and the 

number of cold starts), uncertainty in emission factors estimates for engine exhaust noted 

above [58–60]. These factors can vary temporally and spatially. Other notable factors 

include a lack of traffic counts and on-road emission measurements, and discrepancies 

between fleet classifications and VKT needed by models and the available statistical 

summaries [36, 61]. Because fleet mix and VKT data usually are collected and aggregated at 

the county level, data may not be representative of the city or the roads of interest. As noted 

above, even modest changes in the commercial fraction of traffic may significantly affect 

emissions since, for NOx, one HDDV can emit the equivalent of many passenger cars. This 

may be especially important in Detroit given the considerable through-traffic of commercial 

vehicles (mostly HDDVs) crossing the Ambassador Bridge to or from Canada via along I-75 

and I-94, which may have the effect of increasing the HDDV fraction among these roads and 

boosting NOx emissions. NOx also may have been underestimated since the simplified 

emission factors averaged out higher emissions from cold starts. While these issues may be 

less important for mobile source inventories when aggregated to the annual average and city-

wide level, these issues may be important for estimating spatially- and temporally resolved 

exposures.
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4.3 Temporal allocation factors

The three sets of TAFs yielded few differences above significance thresholds in either NOx 

and CO predictions. Thus, the alternative Detroit-specific TAFs that separated commercial 

and non-commercial traffic did not perform better than the nominal TAFs. This result was 

unanticipated, especially for NOx, given the differences between commercial and non-

commercial vehicles, and the differences seen in the simplified analyses (discussed 

previously). The fairly large hour-to-hour differences in TAFs at the hourly level may be 

“washed out” at the daily level or just not observable given other errors and uncertainties. In 

addition, the local TAFs were based on only the larger Detroit area roads equipped with 

permanent traffic monitoring recorders. Smaller roads can account for a sizable fraction of 

TRAP emissions, e.g., based on the Detroit link-based inventory [36], the smaller (non-

trunkline) roads accounted for 60% of total VKT in 2010. Our calculations show VKT for 

all vehicles and commercial vehicles increasing by 1 and 2 % per year, similar to a recent 

SEMCOG report [62]. The use of local TAFs might improve modeling at the hourly level, 

which was beyond the present scope, as has been suggested elsewhere [63].

4.4 Application

The large differences in predictions that occurred on a few days (see Figure 2 and Figure 

S3), while uncommon, can result from changes in atmospheric stability that alters the near-

road concentration gradient. Thus, while KDTW and KDET obtain mostly similar 

measurements, the hours or days that differ can cause potentially large impacts on the 

estimated health impacts. This possibility may increase when meteorological data are 

obtained at a distant site or is not representative of local conditions. For this simple 

application, predicted exposures differed significantly using the two NWS datasets, and the 

effect was magnified for the vulnerable population (Table 4). Thus, effects due to exposure 

measurement errors may be magnified among sensitive populations, as seen by the greater 

difference in the NEXUS sample.

4.5 Comparison to Literature

The sensitivity of dispersion model results and model-based exposure estimates to input data 

has been explored, however in scenarios with limited generalizability. A city-scale study 

(189 km2) that used the Atmospheric Dispersion Modelling System (ADMS) to simulate 

industrial mercury emissions in northwestern England showed that varying meteorological 

inputs (e.g., meteorological station, release point temperature) changed population-weighted 

exposures by up to 16% [21]. Meteorological inputs also produced the largest variability 

(compared to other inputs) in exposures in a study using ADMS to simulate traffic-related 

emissions of PM10 [64]. A local-scale study (8 km2) that used AERMOD and the Industrial 

Source Complex Short Term model (ISCT3) to simulate hexavalent chromium emissions 

from a shipbuilding facility in California showed similar dependence (25% variation) on 

meteorological inputs [22]. The variations owing to meteorological data in these studies on 

non-TRAP pollutants were similar to results found in this work. As well, an assessment of 

airport and local meteorological data used in urban canyon models found that use of local 

data improved results [16]. However, with reference to the present application, these 

applications have not studied traffic-related pollutants, which are of concern in urban areas, 
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used recent roadway dispersion models, or commented on the potential influence on 

sensitive near-road communities.

4.6 Limitations and Uncertainty

Several limitations and uncertainties are noted. Predictions did not include chemical 

transformations and cold start emissions. The summary comparisons of modeled and 

monitored concentrations used a chosen threshold (0.05) to denote differences in the 

performance measures, which does not imply statistical significance. The computational 

burden limited the number of days that could be simulated, and thus seasonal and day-of-

week analyses were not attempted. Exposures and health outcomes were based on point 

estimates of the concentration-response coefficient, and consideration of the confidence 

intervals may dampen observed results. We did not consider statistical power, or how results 

might vary given different samples of Detroit receptors (e.g., a population-weighted sample). 

There was an issue with identifying the sampling instrument at certain sites, which was not 

resolved – however, the sampling method and detection limit for all were identified. Some 

sources of potential errors pertaining to near-road modeling may be important, but were not 

examined, e.g., geospatial errors in the road network linearization. The exposure results did 

not account for indoor/outdoor relationships or time-activity information, e.g., the time 

children spent at school. We had insufficient data to distinguish results by season.

5 Conclusions

The goal of this paper was to examine the sensitivity of dispersion model predictions of 

TRAP exposure to key model inputs. While data and computationally intensive, dispersion 

models and especially high fidelity models can provide great flexibility and theoretical 

strength, and can represent the spatial variability of TRAP concentrations at locations not 

measured by conventional and spatially sparse air quality monitoring networks. However, 

model estimates are sensitive to input data, and our applications highlighted the need for 

representative meteorological data to predict near-road exposures. In particular, several 

systematic biases can cause exposure measurement errors that could affect results and 

subsequent calculations, e.g., estimated health impacts. This leads to several 

recommendations: the need to develop guidance that defines appropriate meteorological data 

for dispersion modeling of the complex near-road environment (e.g., robust wind fields 

created by computational fluid dynamics models); the use of on-site (local) meteorological 

inputs in near-road dispersion modeling; and that air quality monitoring sites be equipped 

with meteorological instrumentation sufficient to obtain parameters needed by the AERMET 

meteorological pre-processer for generating the input files necessary to run RLINE and other 

dispersion models. Finally, to confirm and extend our results, other operational performance 

evaluations and sensitivity analysis should be conducted across a range of urban settings.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Exposure to traffic-related air pollutants (TRAP) remains a key public health 

issue

• The Research Line-source model (RLINE) is used to predict TRAP in Detroit, 

MI

• Sensitivity to meteorology, emission factors and hourly traffic levels was 

analyzed

• The analysis showed sensitivity to meteorology, and somewhat to emission 

factors

• These sensitivities may lead to significant differences in predicted health 

impacts
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Figure 1. 
The modeling domain, including National Weather Service (NWS) meteorological stations, 

Michigan Department of Environmental Quality (MDEQ) air pollution monitors, a subset of 

Michigan State Trunkline Highway System, locations of NEXUS receptors (representing 

206 residences in the NEXUS cohort), location of Detroit receptors (representing a 

population-weighted sample of residences in Detroit, n = 543).
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Figure 2. 
Scatterplots of NOx predicted using KDET or KDTW meteorology at NEXUS (n=206) and 

Detroit receptors (n=543) by days. Each plot shows the 1:1 line and is truncated at 100 µg m
−3.
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Table 3

Annual (2011) average NOx concentrations (µg m−3) predicted at NEXUS and Detroit receptors using KDET 

and KDTW meteorology.

NWS station NEXUS Detroit

KDET 12.5 8.3

KDTW 15.6 11.1
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Table 4

Mean differences in average attributable cases made using KDET and KDTW meteorology at NEXUS and 

Detroit receptors for various NOx related health outcomes. All differences were significant (Wilcoxon signed 

rank test CI of 95%).

Health outcome Units Age group NEXUS Detroit

Asthma ED visit per 10,000 0–17 −0.0199 −0.0161

Hospitalization due to asthma per 10,000 0–64 −33.8 −28.5

Asthma exacerbation per 10,000 6–14 −0.0005 −0.0004
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